3 research outputs found

    Towards endowing collaborative robots with fast learning for minimizing tutors’ demonstrations: what and when to do?

    Get PDF
    Programming by demonstration allows non-experts in robot programming to train the robots in an intuitive manner. However, this learning paradigm requires multiple demonstrations of the same task, which can be time-consuming and annoying for the human tutor. To overcome this limitation, we propose a fast learning system – based on neural dynamics – that permits collaborative robots to memorize sequential information from single task demonstrations by a human-tutor. Important, the learning system allows not only to memorize long sequences of sub-goals in a task but also the time interval between them. We implement this learning system in Sawyer (a collaborative robot from Rethink Robotics) and test it in a construction task, where the robot observes several human-tutors with different preferences on the sequential order to perform the task and different behavioral time scales. After learning, memory recall (of what and when to do a sub-task) allows the robot to instruct inexperienced human workers, in a particular human-centered task scenario.POFC - Programa Operacional Temático Factores de Competitividade(POCI-01-0247-FEDER-024541

    Inverse kinematics of a redundant manipulator robot using constrained optimization

    No full text
    Redundant manipulative robots are characterized by greater manipulability improving performance but complicating inverse kinematics, on the other hand, optimization techniques allow solving complex problems in robotics applications with greater efficiency. This paper presents the inverse kinematics of a redundant manipulative robot with four degrees of freedom to track a desired trajectory, and considering constraint in manipulability. The optimization problem is proposed using the quadratic position errors of the operative end and the constraint is established by a manipulability index, for this the kinematic model of the robot is determined. The results show the points of singularity of the robot and the performance of the proposal implemented, observing the positional errors and the manipulability for each point of the trajectory. In addition, the optimization is evaluated for two desired manipulability values. Finally, it is concluded that the implemented method optimizes the inverse kinematics to track the desired path while constraining the manipulability. © Springer Nature Switzerland AG 2020
    corecore